Archive for the ‘AY 2010/2011 SEM 1’ Category

Form Follows Performance Exhibition 19-26 Feb. 2011 attract 2,410 Visitors

April 11, 2011 Leave a comment

This slideshow requires JavaScript.

(Photo: Owen Lam)

Form Follows Performance, Digital Fabrication in Architecture Studio, DTS Yr. 4 Programme, Department of Architecture, School of Design and Environment, National University of Singapore

Venue: Promenade Level 8, National Library Building, 100 Victoria Street, Singapore

Period: 19-26 Feb. 2011

Sponsors: National Library Singapore, McNeel Asia

Thank you for all sponsors, visitors, collaborators and students !

Categories: AY 2010/2011 SEM 1

Dfab Exhibition: Form follows Performance

February 1, 2011 Leave a comment


Venue: Promenade, Level 8, National Library Building, 100 Victoria Street, Singapore
Period: 19 Feb. 2011, 5 pm – 26 Feb. 2011 (10 am – 9 pm daily, admission free)
Opening: 19 Feb. 2011, 2 pm – 2:30 pm 
(Guided tour with refreshments. RSVP by 17 February 2011 to Ping Lei,


This slideshow requires JavaScript.

Categories: AY 2010/2011 SEM 1


November 22, 2010 1 comment

Structure demanded a very stable hyperboloid form as internal structure. Strength of mesh structure is directly propotional to the distance between vertical member. Structural Simulations showing stress distribultion maximum and minimum over the hyperbolic structure with pentagonal opening as stable mesh form.

Skin analysis involved process of major solar incident radiation calculation and optimization of facade panels. Curvilinear floor plates created a challenge to achieve equal no. of panels. Upward conical extrusion of plates result with more optimised panels as well as self shading structure.

Thanks Ping lei to upload my project !!

Command explored:

Ptpanelgridcustom, Ptfinedges, unrolledges (helpful videos to understand panelling tools, which is most important for fabrication)


Categories: AY 2010/2011 SEM 1

Caving-in:tri-grid ribs for mass-customisation biomimicry

November 22, 2010 Leave a comment

Tracing the forces translated at each diaphragm.

Top two images shows the difference between the stress distribution with and without cores.

Digital fabrication Flow.

The last two steps (contouring Rhino3D solid, unrolling/ re-orienting each rib on a sheet for lasering+ labelling)were extremely time consuming for such a scale of mass customisation.

Rhinonest has a tool that combines the end process into one! i.e.

-3D contour slice

-unroll/re-orient on flat plane


Video shows the old version of 3d contour or this

Noticed that you need to have a very powerful processor(they used quad in the 2nd video) You can even customize the way of labelling if different levels exists! But Rhinonest is a very sensitive plug-in. When I used the postition optimization tool, curves that were not closed were not identified as an object. So Rhinonest contour should require a solid of closed polysurface too!

Assembly of 3-directional ribs

Systems: Infill-floor system and Angled facades with repetitive modules of different combinations. Window mullions as secondary loadbearing members

Categories: AY 2010/2011 SEM 1

Structural Shading

November 20, 2010 Leave a comment

#shading device that acts as a structural member as well.

#column thickness pattern (cross-sectional shape) to determine structural distribution

#shape of column profile to determine shading

#building outline derived based on sunshading and Ecotect simulations

#column/grid pattern based on Algor simulations

Difficulties encountered: In the case of this project, due to the numerous curved surfaces, Algor simulations could only be possible by meshing the entire model as a solid and not as planes. Sometimes the meshing does not work until the mesh size is reduced such that it is possible to mesh small areas/ sharp ends of each curved facet, and this in turn becomes a very time-consuming process of meshing.

Michelle :]

Categories: AY 2010/2011 SEM 1

November 20, 2010 Leave a comment

1. Stress Distribution Image of a typical floor plate

2. Using this grasshopper definition, translate the image into points with varying displacement in the Z direction

3. Grasshopper can help you transform points to surfaces then to ribs

4. Interior Perspective

5. Final Model



Categories: AY 2010/2011 SEM 1

Parametric Dia-Grid: Thickness/Depth

November 19, 2010 Leave a comment

One of the greatest issues i faced was doing algor analysis. In short, algor doesn’t like many surfaces. The reason being it interrupts with its meshing engine. The workaround is of course to use as little surfaces as possible. How i did that was to create voids instead of the real diamond panels that consisted of 4 surfaces each (if you have 100 panels, that makes 400 surfaces and that would easily make algor crash). After creating the voids, i “booleaned” it away from a huge surface (say the east facade), so that what remains is a huge surface with many diamond holes in it. That way algor knows how to mesh easily. Calculation time is also GREATLY REDUCED. (i would say exponentially)

Categories: AY 2010/2011 SEM 1